Silnik BLDC ma wiele zalet. Do najważniejszych zaliczyłbym niewielkie wymiary i mały ciężar przy jednocześnie dużej mocy i sprawności. Pozwala to na takie zastosowania napędu elektrycznego, o jakich trudno było pomyśleć w przeszłości. Oprócz oczywistego wykorzystania silnika BLDC w układach napędowych różnych pojazdów, coraz częściej są podejmowane próby jego użycia w lotnictwie. Bez wątpienia jest to silnik przyszłości, z którego sterowaniem wcześniej czy później będzie miał do czynienia każdy konstruktor-elektronik. W artykule podano niezbędne minimum wiedzy na temat sposobu sterowania silnikiem z praktycznego punktu widzenia oraz podzespołów, które są do tego niezbędne. czytaj więcej
Konstruktor budujący urządzenie z układami cyfrowymi często staje przed dylematem wyboru odpowiedniego generatora sygnału zegarowego (taktującego). W praktyce można skorzystać z wielu rozwiązań, począwszy od generatorów RC wbudowanych w struktury układów, poprzez moduły generatorów o częstotliwości stałej lub przestrajanej napięciem oraz inne, specjalistyczne rozwiązania jak np. generator rubidowy. czytaj więcej
Wentylator może być traktowany tak, jak pompa powietrza, która zamienia ruch wirowy i moc napędzającego ją silnika na przepływ strumienia powietrza o określonej prędkości i ciśnieniu. Do konwersji używany jest element wykonawczy w postaci śmigła. Nic bardziej oczywistego. A jak pogodzić wielkość wentylatora z ilością odprowadzanego ciepłego powietrza? Kiedy zastosować wentylator a kiedy dmuchawę? Odpowiem na to i inne  pytania korzystając z materiałów tajwańskiej firmy Sunon. czytaj więcej
W artykule podano opis funkcjonowania oraz sposobów konfiguracji i wykorzystania układów timerów w mikrokontrolerach z rodziny AVR. Rozpoczynając od ogólnego opisu, poprzez przykładowe programy, postaram się wytłumaczyć jak wykorzystać wbudowany w strukturę mikrokontrolera AVR timer dla własnych potrzeb. W przykładach programów posługiwałem się mikrokontrolerem AT90S8535, który nie jest już produkowany, ale w takie same timery są wyposażone mikrokontrolery ATMega. czytaj więcej
Interfejsy szeregowe najczęściej używane są do komunikacji pomiędzy układami w obrębie urządzenia, modułu czy wręcz płytki drukowanej. Najczęściej stosowane i przez to najczęściej spotykane są interfejsy I2C oraz SPI. W dzisiejszych czasach konstruktor może napotkać jeden problem: często mikrokontrolery czy mikroprocesory zasilane są dużo niższym napięciem niż układy peryferyjne. Wykonywane są one w bardzo dużej skali integracji, w technologii, w której wymiary pojedynczego tranzystora to ułamki mikrometra. Takie układy zapewniają dużą wydajność (większy stopień upakowania elementów, krótsze połączenia pomiędzy elementami) ale wymagają do zasilania napięcia rzędu 1,5 V. Co zrobić, gdy pozostałe układy komunikujące się z procesorem zasilane są przez napięcie o innej wartości? Na przykład przetworniki analogowo – cyfrowe, które dla uzyskania dobrej dynamiki potrzebują napięć zasilania 5 V i wyższych? Konieczna staje się wówczas budowa tzw. translatora poziomów napięć. Dalej zostanie omówiony przykład takiej aplikacji dostosowany do pracy z interfejsami szeregowymi. czytaj więcej
Wyświetlacze LCD od telefonów komórkowych idealnie nadają się do zastosowania w układach z mikrokontrolerem. Telefon Nokia 3310 nie jest już oferowany przez operatorów sieci komórkowych, ale olbrzymia liczba sprzedanych egzemplarzy spowodowała, że można już za  ok. 10 złotych kupić do niego wyświetlacz oferowany jako część zamienną. Matryca wyświetlacza ma rozdzielczość 84×48 piksele. W trybie tekstowym można wyświetlić 14 znaków w 6 liniach. W porównaniu z możliwościami popularnych wyświetlaczy alfanumerycznych (najczęściej 2×16 lub 2×20 znaków) jest to dosyć sporo. Ponieważ wyświetlacz został zaprojektowany do urządzenia przenośnego, to pole wyświetlania matrycy LCD nie jest zbyt duże (30×24mm). Grubość modułu jest również niewielka (ok. 3 mm). czytaj więcej
Z wyrobami firmy austriamicrosystems AG zetknąłem się po raz pierwszy przy okazji targów ELECTRONICA 2000, a następnie podczas poszukiwań względnie taniego, powtarzalnego sposobu określenia pozycji głowicy w jednym z projektowanych urządzeń. Firma ta produkuje specjalizowane układy scalone zawierające wewnątrz struktury matrycę czujników Hall'a oraz procesor uzbrojony w specjalny algorytm umożliwiający określenie położenia pola magnetycznego wytwarzanego przez umieszczony ponad strukturą magnes stały. czytaj więcej
Troszeczkę przez sentyment do ST6, troszeczkę ze względu na cenę i bogate „uzbrojenie” w układy peryferyjne, do kilku ostatnio budowanych przeze mnie urządzeń, postanowiłem użyć mikrokontrolera ST7FLITE29 oraz oprogramowania napisanego za pomocą kompilatora języka C dla ST7 firmy Metrowerks. Moim zdaniem to bardzo dobry mikrokontroler, dobrze wyposażony i doskonale działający. Oczywiście jak każdy – ma swoje wady i zalety, jednak przy odrobinie akcji marketingowej oraz lepszym zaopatrzeniu dystrybutorów, firma ST Microelectronics ma ogromną szansę na przełamanie hegemonii niektórych producentów na polskim rynku, również w zastosowaniach amatorskich. Niniejszy artykuł będzie próbą opisu moich doświadczeń i wrażeń z pracy nad aplikacjami z ST7FLITE19/29 i być może pozwoli zaoszczędzić komuś czas, którego osobiście potrzebowałem bardzo dużo. czytaj więcej
Pamięci są dzielone na dwie kategorie. Pierwszą z nich są pamięci nieulotne. Od wielu lat są one używane w aplikacjach w celu zapamiętania pewnych stałych, niezmiennych informacji. Może to być program realizowany przez mikroprocesor czy też dla przykładu wzorce znaków wyświetlanych na ekranie wyświetlacza LCD. Podstawową cechą tego rodzaju pamięci jest stałość przechowywanych informacji również wtedy, gdy brak jest napięcia zasilania. Zazwyczaj zapis pamięci stałej (często zwany jej programowaniem), nawet mimo użycia technologii EEPROM czy też FLASH EEPROM, jest dość trudny i zajmuje dużo czasu, jeśli odnieść to do czasu odczytu tej pamięci. Druga grupa to pamięci ulotne, tzw. RAM. Są one łatwe do zapisu i pracują bardzo szybko, więc służą do przechowywania danych, które często ulegają zmianie. Inaczej niż w pamięciach nieulotnych, dane przechowywane w RAM giną po odłączeniu napięcia zasilającego i jeśli konieczne jest z jakiś względów zachowanie niezmiennego stanu RAM, to jest wymagane stosowania pomocniczych źródeł zasilania. Jest to swego rodzaju wyzwanie dla konstruktora układu. Wad wyżej opisanych układów nie ma nowy rodzaj pamięci, której technologia wytwarzania przed kilkunastu laty opuściła laboratoria naukowe. Jest to pamięć FRAM. Skrót nazwy tłumaczy się jako Ferroelectric Random Access Memory. Oznacza on technologię wytwarzania (uwaga!) nieulotnej pamięci RAM, czyli pamięci łączącej w sobie szybkość pracy RAM i trwałość ROM. czytaj więcej